124 research outputs found

    Modelling and feedback control design for quantum state preparation

    Get PDF
    The goal of this article is to provide a largely self-contained introduction to the modelling of controlled quantum systems under continuous observation, and to the design of feedback controls that prepare particular quantum states. We describe a bottom-up approach, where a field-theoretic model is subjected to statistical inference and is ultimately controlled. As an example, the formalism is applied to a highly idealized interaction of an atomic ensemble with an optical field. Our aim is to provide a unified outline for the modelling, from first principles, of realistic experiments in quantum control

    Feedback control of quantum state reduction

    Get PDF
    Feedback control of quantum mechanical systems must take into account the probabilistic nature of quantum measurement. We formulate quantum feedback control as a problem of stochastic nonlinear control by considering separately a quantum filtering problem and a state feedback control problem for the filter. We explore the use of stochastic Lyapunov techniques for the design of feedback controllers for quantum spin systems and demonstrate the possibility of stabilizing one outcome of a quantum measurement with unit probability

    Robust quantum parameter estimation: coherent magnetometry with feedback

    Get PDF
    We describe the formalism for optimally estimating and controlling both the state of a spin ensemble and a scalar magnetic field with information obtained from a continuous quantum limited measurement of the spin precession due to the field. The full quantum parameter estimation model is reduced to a simplified equivalent representation to which classical estimation and control theory is applied. We consider both the tracking of static and fluctuating fields in the transient and steady state regimes. By using feedback control, the field estimation can be made robust to uncertainty about the total spin number

    Adaptive homodyne measurement of optical phase

    Get PDF
    We present an experimental demonstration of the power of real-time feedback in quantum metrology, confirming a theoretical prediction by Wiseman regarding the superior performance of an adaptive homodyne technique for single-shot measurement of optical phase. For phase measurements performed on weak coherent states with no prior knowledge of the signal phase, we show that the variance of adaptive homodyne estimation approaches closer to the fundamental quantum uncertainty limit than any previously demonstrated technique. Our results underscore the importance of real-time feedback for reaching quantum performance limits in coherent telecommunication, precision measurement and information processing.Comment: RevTex4, color PDF figures (separate files), submitted to PR

    Deterministic Dicke state preparation with continuous measurement and control

    Get PDF
    We characterize the long-time projective behavior of the stochastic master equation describing a continuous, collective spin measurement of an atomic ensemble both analytically and numerically. By adding state based feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.Comment: Additional information is available at http://minty.caltech.edu/Ensemble

    Scattering of polarized laser light by an atomic gas in free space: a QSDE approach

    Get PDF
    We propose a model, based on a quantum stochastic differential equation (QSDE), to describe the scattering of polarized laser light by an atomic gas. The gauge terms in the QSDE account for the direct scattering of the laser light into different field channels. Once the model has been set, we can rigorously derive quantum filtering equations for balanced polarimetry and homodyne detection experiments, study the statistics of output processes and investigate a strong driving, weak coupling limit.Comment: 9 pages, 2 figure

    Tensor polarizability and dispersive quantum measurement of multilevel atoms

    Get PDF
    Optimally extracting information from measurements performed on a physical system requires an accurate model of the measurement interaction. Continuously probing the collective spin of an Alkali atom cloud via its interaction with an off-resonant optical probe is an important example of such a measurement where realistic modeling at the quantum level is possible using standard techniques from atomic physics. Typically, however, tutorial descriptions of this technique have neglected the multilevel structure of realistic atoms for the sake of simplification. In this paper we account for the full multilevel structure of Alkali atoms and derive the irreducible form of the polarizability Hamiltonian describing a typical dispersive quantum measurement. For a specific set of parameters, we then show that semiclassical predictions of the theory are consistent with our experimental observations of polarization scattering by a polarized cloud of laser-cooled Cesium atoms. We also derive the signal-to-noise ratio under a single measurement trial and use this to predict the rate of spin-squeezing with multilevel Alkali atoms for arbitrary detuning of the probe beam.Comment: Significant corrections to theory and data. Full quality figures and other information available from http://minty.caltech.edu/papers.ph

    Characterizing the entanglement of symmetric many-particle spin-1/2 systems

    Get PDF
    Analyzing the properties of entanglement in many-particle spin-1/2 systems is generally difficult because the system's Hilbert space grows exponentially with the number of constituent particles, NN. Fortunately, it is still possible to investigate many-particle entanglement when the state of the system possesses sufficient symmetry. In this paper, we present a practical method for efficiently computing various bipartite entanglement measures for states in the symmetric subspace and perform these calculations for N103N\sim 10^3. By considering all possible bipartite splits, we construct a picture of the multiscale entanglement in large symmetric systems. In particular, we characterize dynamically generated spin-squeezed states by comparing them to known reference states (e.g., GHZ and Dicke states) and new families of states with near-maximal bipartite entropy. We quantify the trade-off between the degree of entanglement and its robustness to particle loss, emphasizing that substantial entanglement need not be fragile.Comment: Updated version reflects changes made in January 200
    corecore